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The instability of a three-dimensional attachment-line boundary layer is considered 
in the nonlinear regime. Using weakly nonlinear theory, i t  is found that, apart from 
a small interval near the (linear) critical Reynolds number, finite-amplitude solutions 
bifurcate subcritically from the upper branch of the neutral curve. The time-dependent 
Navier-Stokes equations for the attachment-line flow have been solved using a 
Fourier-Chebyshev spectral method and the subcritical instability is found at  
wavenumbers that correspond to the upper branch. Both the theory and the 
numerical calculations show the existence of supercritical finite-amplitude (equili- 
brium) states near the lower branch which explains why the observed flow exhibits 
a preference for the lower branch modes. The effect of blowing and suction on 
nonlinear stability of the attachment-line boundary layer is also investigated. 

1. Introduction 
Our concern is with the weakly nonlinear and fully nonlinear stability of a 

three-dimensional attachment-line boundary layer obtained by introducing a crossflow 
into the classical Hiemenz stagnation-point boundary-layer solution. The resulting 
flow has a constant boundary-layer thickness and is in fact an exact solution of the 
Navier-Stokes equations. Thus, it is not necessary for us to obtain a self-consistent 
asymptotic solution of the instability problem based on a high-Reynolds-number 
approximation. In  fact, the flow we consider is the first-order boundary-layer solution 
corresponding to the flow near the leading edge of a swept wing. If the flow over the 
wing is required to be laminar, then it is, of course, essential that the attachment-line 
flow be stable so that the problem we consider is of direct relevance to laminar flow 
control. 

The present calculation is an extension into the nonlinear regime of the work of 
Hall, Malik & Poll (1984). Hereafter, we refer to that paper as I, and we shall shortly 
discuss the relevant details of that paper. The linear theory given in I was motivated 
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by the experimental investigations of Pfenninger & Bacon (1969) and Poll (1979, 
1980). These authors measured the frequencies of naturally occurring disturbances 
along the attachment lines of the flows over different swept cylinders. It was found 
that small-amplitude time-periodic disturbances exist above a certain critical 
Reynolds number and correspond to the lower branch of the neutral curve calculated 
in I. None of the experimental points appeared to correspond to upper-branch 
disturbances; however, it is, of course, possible that, if the flow were forced by, for 
example, a vibrating ribbon, then such modes might be observed. The first aim of 
the present study is to determine whether a weakly nonlinear stability calculation 
based on the Stuart-Watson expansion procedure can explain why the flow exhibits 
a preference for lower-branch modes. We show that, apart from a small interval near 
the critical Reynolds number, finite-amplitude solutions bifurcate subcritically from 
the upper branch. This means that these solutions are unstable and therefore would 
not correspond to an observable equilibrium state. However, the existence of these 
solutions suggests that the basic state might be nonlinearly unstable to sufficiently 
large finite-amplitude disturbances. For this reason we decided to investigate 
numerically the full nonlinear stability equations using a Fourier-Chebyshev expan- 
sion to represent the spatial structure of the disturbance flowfield. 

In  fact, Pfenninger & Bacon found that turbulence wires introduced into the 
attachment region could induce large-amplitude disturbances in the boundary layer 
at Reynolds numbers significantly below the linear critical point. Thus we use a 
Fouriedhebyshev spectral method to simulate finite-amplitude disturbances at 
Reynolds numbers not necessarily close to the neutral curve. In recent years similar 
calculations for flows such as plane Poiseuille flow have become commonplace, and 
the reader is referred to, for example, the papers by Orszag & Kells (1980) and Moin 
t Kim (1982). This type of calculation follows the time evolution of an initial 
perturbation imposed on the basic flow, so that unstable time-periodic equilibrium 
states of the type calculated by Herbert (1977) cannot be found by this approach. 
However, the size of such periodic disturbances can be inferred if required by 
gradually increasing the size of the initial perturbation. 

In order to check the results of our calculations, we shall compare the numerical 
results with those predicted by weakly nonlinear stability theory. In particular, we 
calculate numerically the supercritically bifurcating solutions close to the lower 
branch and see how the size of the equilibrated disturbance compares with that 
predicted by the Stuart-Watson method. Further checks are made by comparing 
our numerical results for small-amplitude disturbances with the results of I. We shall 
show that below the linear critical Reynolds number it is possible to induce 
nonlinearly unstable perturbations by appropriate choices of the wavenumber and 
the initial amplitude of the disturbance. Qualitatively we shall find that our results 
are consistent with the available experimental results. It is possible that the 
quantitative agreement between theory and experiment which we find in the weakly 
nonlinear regime cannot be reproduced in the fully nonlinear regime because the 
disturbances produced experimentally by Pfenninger & Bacon were necessarily 
three-dimensional. The procedure adopted in the rest of the paper is as follows: In 
$2 we formulate the stability equations which govern the stability of the three- 
dimensional boundary layer obtained by introducing a crossflow into the classical 
Hiemenz boundary-layer solution. In $ 3  we discuss the instability in the weakly 
nonlinear regime whilst in $4 we discuss the numerical simulation of large-amplitude 
disturbances. Finally, in $5  we discuss our results and their practical implications. 
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2. Formulation of the problem 
Let us consider the flow of a viscous fluid of kinematic viscosity v over the flat plate 

defined by y = 0. The velocity of the fluid with respect to the Cartesian coordinate 
system ( x ,  y ,  z) is (u, v, w), and sufficiently far away from the plate 

X 
u - ue,, w - we, (2.1) 

whilst at the wall we impose the conditions 

u = w = o ,  v = v o .  (2.2) 

(2.3a, b,  c )  

so that A is the thickness of the boundary layer a t  the wall whilst R and K are the 
Reynolds number and a non-dimensional suction parameter, respectively. 

It is convenient to diverge from the scalings of I and write 

u = we O(X, Y , Z , t ) ,  p = pWeF(X, Y , Z , t ) ,  (2.4) 
where p is the fluid density whilst ( X ,  Y ,  2) = A - ' ( x ,  y ,  z )  and the time variable t has 
been scaled on A WL1. The continuity and momentum equations then take the form 

(2.5a, b )  

and when Y+oo we require that U + X / R ,  W+1. We therefore choose to seek a 
solution of (2.5) which has the particular structure 

V * U = O ,  €7t+(€7.v)€7=-vP+zvv7, 1 

X 
Re 8= (XU, v, W ) ,  P = - - + P ,  

where U ,  V ,  Wand P now depend only on Y ,  Z and t .  The equations (2.5) then simplify 
to \ u+ v y +  w, = 0, 

I 1 1  u,+ v+ vu,+ wu, = ~+jpYY+ U,,}, 

V,+vvy+wv, =-P,+~{vyy+vzz} ,  1 

1 
R{ F&+ vwy+ WW, = -P +- wyy+ W,,}, 

which are to be solved subject to 

1 u+p W - t l ,  Y-too. 

u = j ju(  Y ) ,  v = jjv( Y ) ,  

In the absence of any disturbance, the basic flow takes the form 

1 -  1 -  w = @( Y ) ,  
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where U, 17, and fi are determined by solving 
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(2.9) 

U+V‘ = 0, 
v ” ’ + . $ 2 - @ - 1  = 0, 

ijy-fifj’ = 0, 

c’(0) = 0, v(0) = K ,  ‘??’(a) = - 1, w(0) = 0, ‘@(COO) = 1. 

When the disturbance imposed on the flow is not small, we must solve (2.7) subject 
to (2.8) numerically, and this will be discussed in $4. When the disturbance is 
sufficiently small for us to  use weakly nonlinear stability theory based on the 
Stuart-Watson method, i t  is convenient for us to write 

- - 
U 2, u=-+8, v = - + P ,  w = w + w ,  
R R 

in which case 8, 8, @ and P satisfy 

8+ F+y+ mz = 0, 

9’8 - {2UB+ PU‘} = R{D2+ PO,+ muz}, 
2 8 -  VV’ = RPy+R{PVy+ PPZ}, 
9’R+RViZ = RPz+R{PPy+ Wmz} .  

Here the operator 2 is defined by 

(2.10) 

(2.1 1) 

(2.12) 

The discussion of I was restricted to the linear regime where the nonlinear terms in 
(2.1 1 )  can be neglected; in the following section we determine how these disturbances 
develop in a neighbourhood of the neutral curve, whilst in $4 larger disturbances will 
be calculated by integrating (2.7) numerically. 

3. Weakly nonlinear stability theory 
In  I the solution of the linearized version of (2.12) was discussed. This was done 

by taking 8, 8, w and P to be proportional to E = exp (ia[Z-ctl). Thus the 
disturbance has wavelength 2zla and propagates along the attachment line with 
speed c. We found in I that in the case of zero suction instability is possible for 
R > 583.1 and that with suction the flow is significantly stabilized. We follow the 
usual approach ofweakly nonlinear stability theory and determine how the disturbance 
develops in a neighbourhood of a point on the neutral curve in the (a. R)-plane. 
Suppose then that (a,, R,) is a point on a neutral curve for some values of K and that 
the corresponding value of c is c,. We expand 

R = K,+ER,+ ..., (3.1) 

7 = Et. (3.2) 

where 0 < E < 1 and define a slow time variable 7 by 

The X velocity component then cxpaiids as 

0 = {€: 0, E + C: 17, IP + ti P3 133 + B (f4 E} + (a + + O(E’) 
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FIQURE 1.  The neutral curves in the (ao, R,)-plane for different values of K .  

where C.C. is the complex conjugate and 8, @ and P are expanded in a similar 
manner. It is then a routine procedure to substitute the above expansions into (2.12) 
and equate like powers of d. At order €4 we find that 

(‘07 80) = A(7) (UO, V,), 
where A(7) is an amplitude function to be determined at higher order whilst (U,, V,) 
satisfies the sixth-order differential system 

(3.3) I {M,+ia,R,c,} U,-2 i iU , - i i ’~ -XJ~- ia0R, i i iU ,  = 0, 

{M, + ia, R, c,} M, V, - ia, R, GM, V, + ia, R, G‘’ V, 

-gM1 Vi-Z)‘M1 V,+2ii’Uo+2iiUi+fi”&+ii’Vi = 0, 

u,= v,= V i = O ,  Y = O , O o ,  

where Mj = d2/dY2-aij2. Thus (3.3) is just the eigenvalue problem discussed in I, 
and in figures 1 and 2 we have shown the neutral values of a,, aOcO for several 
different values of K .  The eigenrelation was obtained by using a fourth-order-accurate 
finite-difference scheme to solve (3.3) after first writing V = [ V,, V i ,  V,”, V:, U,,  UJ’, 
so that V satisfies an equation of the form 

dV 
d Y  
- = BV, (3.4) 

where B is a 6 x 6 matrix whose elements are given explicity in I. Later we shall need 
the solution of the system adjoint to (3.3), and if q = [ql ,  q2, q3, q4, q5, qslT is the adjoint 
vector, the appropriate system is 

(3.5) - dq = -BTq, q3 = q4 = qs = 0, Y = 0, CO. 
dY 



262 P. Hall and M .  R.  Malik 
0.30 

0.25 

0.20 

aoc, 0.15 

0.10 

0.05 

K = +0.8 

K = +0.4 

0 
Ro 

FIGURE 2. The neutral curves in the (ao co, R,)-plane for different values of K .  

Here the precise manner in which these functions decay to zero can be found by 
looking at  the asymptotic solution of the adjoint differential equation for Y % I .  We 
note here only that, if we insist that this decay is exponential, then (3.5) has only a 
discrete spectrum of eigenvalues which, of course, is identical with that associated 
with (3 .3) .  

At order E we find that 

( u 2 ,  P,) = A2(U2, V,), ( O M ,  V M ,  V M ,  &) = I A (uM, v,, w , , p M ) ,  
where (U, ,  V,) satisfy 

{M, + 2ia, R, co} U ,  - 2UU, - U’ V, - VU; - 2ia0 R, EU, = R,{ V, Ui - U, Vi},  

{M, + 2ia, R, c,} M, V, - 2ia, R, EM, V, + ia, R, @” V, - fiM, V;  (3.6) 

(3 .7a)  

1 = -R0[-4a; U ,  V,+2(2UO U i +  V;  Vi+ Ui  V i -  V, Vi- V, Ui+2U0 V;)],  

whilst the mean-flow correction is determined by 

u M +  V h  = 0, 

u” M - ~ U M - ~ U U M - V M ~ ’  =R0{41 u,I2+(V0 U:)’+(V:u,)’}, (3.7b) 

V&-VVM-V,V’-R,PL= R, {2 (~V,* ) ’+UoV,*+U,*V, } ,  (3.7c) 

R 

‘ a 0  

W&-VW;M-RO V’E’ =“{V, U,*’+ V, V,*”- V,* Ui-  V l  V,*}, ( 3 . 7 4  

where * denotes complex conjugate. The system of equations (3 .6)  is to be solved 
subject to u,= V , =  v;=o, Y = O ,  

with U,, V, tending to zero exponentially when Y + 00. Now turning to the mean-field 
correction equations, we note that UM can be eliminated from (3.7b) using the 
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equation of continuity to give a third-order equation for V,. For large values of Y 
this equation has the three independent solutions 

V, - constant, 

V,- p, 
V, ry e--fY2, 

so that, in order to satisfy the no-slip condition V ,  = U ,  = 0 at the wall, we relax 
the condition on V, at infinity to 

V&O, Y-too. (3.8) 

Having determined V,, we can then integrate ( 3 . 7 4  to find W, and we note that 
the structure of the equation for W, for Y % 1 enables us to find a W, such that 

WM(0) = 0, W,+O (exponentially), Y+m. (3.9) 

Finally, UM and PM can then be determined from (3.7a, c )  respectively. 
At  order d we obtain differential systems for (o,, K, q, e), (o,, 8,, R, e), in 

the usual way. We obtain an amplitude equation for A(T)  as a solvability condition 
on the system for (o,, K, v,, 4). The equation takes the form 

dA 
dr  

- a,R,A+a,AIAI2 ,  (3.10) _-  

where the constants a, and a, are defined by 

- JOm [ia, {(E- c,) ( V; - a: V,) + E” V,} q4 + ia, {(a- c,) U,} qe] d Y 
a, = , (3.11a) 

‘ 0  6 [‘O q 6 +  ( vi-ai V,) q41 

The constants a, and a, can be determined only after integrating numerically the 
differential systems for the eigenfunction, adjoint eigenfunction, first-harmonic 
function and the mean-field correction. This was done using the fourth-order accurate 
finite-difference scheme described in I. In all the calculations the eigenfunctions were 
normalized such that the maximum value of I W, 1 was unity. The integrals appearing 
in the definition of a, and a, were then evaluated using the trapezium rule; the results 
of a calculation for K = -0.1, 0, 0.4, 0.8 are shown in figure 3. We have only given 
results for the real parts of a, and a, since this information is sufficient to calculate 
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FIQURE 3(a ,b) .  For caption see p. 267. 
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FIGURE 3 ( c , d ) .  For caption see p. 267. 
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FIGURE 3(e,f) .  For caption see p. 267. 
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200 250 300 3 50 
0.404 R, 

FIGURE 4. Comparison of the calculated neutral curve with the experiment. The finite-amplitude 
solution bifurcates subcritically beyond the arrow marked along the upper branch. 0, Pfenninger 
t Bacon (1969); 0, Poll (1979, 1980). 

the amplitude of an equilibrium disturbance. Before discussing these results further 
we note from (3.10) that 

--I A l 2  = Ria,, I A I2+a,, I A 14, 2 dr 

so that equilibrium solutions are possible if 

IAI2 = -R,a,,a;,?, 

and this solution is stable if the bifurcation is supercritical (alr < 0) and unstable if 
the bifurcation is subcritical (ulr > 0). In the latter case a finite-amplitude motion 
having I A l 2  > R, a,, a;,? causes I A I to increase without limit. 

Now let us turn to the results illustrated in figure 3. The most important results 
correspond to K = 0, and we see that the bifurcation is always supercritical on the 
lower branch. But a,, has a zero near R, w 595, and for the remainder of the upper 
branch the bifurcation is subcritical. In figure 4 we have shown the neutral curve for 
K = 0 together with the experimental points due to Poll (1979, 1980) and Pfenninger 
& Bacon (1969). We have marked by an arrow the position along the upper branch 
beyond which the finite-amplitude solution bifurcates subcritically and is unstable. 
As expected, it seems that the experiments have picked up the disturbances 
corresponding to  the parts of the neutral curve where the bifurcation is supercritical. 
Later we shall describe a numerical investigation of finite-amplitude disturbances, 
and in order to test our calculations we shall try to reproduce quantitatively the finite- 
amplitude solution which bifurcates supercritically from the lower branch at 
R, = 800. We shall also investigate the possibility of finite-amplitude motions at  
Reynolds numbers significantly less than the critical value. These disturbances are 
to be expected since the bifurcation is subcritical over most of the upper branch. 

It remains for us to discuss the results for the cases when K =+= 0. We see that 
increasing the blowing at the wall reduces the Reynolds-number regime over which 
subcritical disturbances are possible. In fact when K = 0.8 the bifurcation is always 
supercritical so that the flow is not susceptible to ‘threshold amplitude ’ effects. 

We see in figure 3 that when K = -0.1 the point on the neutral curve where there 
is a crossover from subcritical to supercritical bifurcation moves down from the upper 
branch to a point on the lower branch. Thus, the bifurcation is now subcritical a t  
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the critical Reynolds number. This is consistent with the results of Hocking (1974) 
who investigated the nonlinear stability of the asymptotic suction boundary layer 
which corresponds to the limit K+-w.  Furthermore, we note that at  some values 
of K in this range ( - 0.1,O) the zero of a,, must occur at the critical Reynolds number; 
thus, if we wanted to extend our analysis to include slow spanwise variations the 
appropriate evolution equation would not in this case be that found by Stewartson 
& Stuart (1971) and would have to include fifth-order terms in the disturbance 
amplitude. 

The evolution of the supercritically bifurcating solution with increasing Reynolds 
number is beyond the scope of the present calculation. However, if the disturbances 
develop in a manner typical of convective or centrifugal instabilities, it is possible 
that the flow remains laminar over a significant range of values of the Reynolds 
number. If three-dimensional instabilities of the supercritically bifurcating solution 
exist then the subsequent development of the flow would be more complex. However, 
if the origin of transition on the attachment line of a swept wing is due to subcritical 
disturbances, then i t  is not clear whether suction would be effective in keeping the 
attachment line stable. This follows from the fact that suction, although increasing 
the critical Reynolds number, makes the flow more susceptible to subcritical 
disturbances. In contrast, blowing ultimately causes the disappearance of subcritical 
disturbances but lowers the critical Reynolds numbers at  which infinitesimal 
disturbances are unstable. 

4. Direct numerical simulation 
The attachment-line boundary layer is strictly parallel; i.e. the basic flow is 

independent of the coordinate along the attachment line. Therefore we can employ 
periodic boundary conditions in that direction for the solution of (2.7). This is to be 
contrasted with the Blasius boundary layer, where periodic boundary conditions do 
not simulate the actual physical problem in a rational way, as the growth of the 
boundary layer cannot be accounted for. 

For the present boundary layer, a Fourier-Chebyshev spectral method will be used 
to simulate two-dimensional finite-amplitude states. We use the spectral-collocation 
method of Malik, Zang & Hussaini (1984) (hereafter referred to as MZH) for the 
solution of (2.7) subject to the boundary conditions (2.8). A stretching transformation 
can be applied in the (unbounded) vertical direction. Let 

l+r] Y = a -  
b-7’ 

where Y is the physical vertical coordinate, r] the computational coordinate and a 
and b are constants. Let Yma, be the upper boundary in the physical plane and set 

2a 
b=l+,-. 

max 

Then for any choice of the scaling parameter a ,  the computational coordinate r ]  
falls within the standard Chebyshev interval [ - 1 ,  11. The collocation points in the 
computional plane are 

2, =3x, . Lz j = 0, 1 ). . .)  K - 1 ,  

mn: 
N 

T m  = cos-, m = 0 ,  1 ,..., N ,  

(4.3) 

(4.4) 
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where L, = 2n/a ,  and K and N are the number of intervals in the Z and Y directions, 
respectively. The dependent variables have Fouriel-Chebyshev series of the form 

$K-1 N 

k--$K n-0 
U ( z ,  Y ,  t )  = U k n ( t )  etxikZILz T,('$J), (4.5) 

where T, is the Chebyshev polynominal of degree n. In  the spectral collocation 
method, spatial derivatives of u are obtained by differentiating the series expansion 
with the expansion coefficients ?hkn ( t )  determined by discrete Fourier and Chebyshev 
transforms of the grid-point values of u. The details of the procedure are given in 
Gottlieb & Orszag (1977). Derivatives in the vertical direction are evaluated by 
multiplying the Chebyshev collocation in 7 by the Jacobian of the transformation, 
i.e. 

In  the temporal discretization, the pressure-gradient term and the incompres- 
sibility constraint are best handled implicitly. So, too, are the vertical diffusion terms 
because of the fine mesh-spacing near the wall. We use Crank-Nicholson time 
discretization on the implicit terms and second-order Adams-Bashforth on the 
remainder. After a discrete Fourier transform in 2, the following set of ordinary 
differential equations results (we list them in the order they are stacked for numerical 
computations) : 

(4.7) I - on+i - Vn+i - $@%+I = 0, 
Y 

- p P + l +  YY P+l+ Q";" = Pn +!jAt(3R: - @ - l )  - py + B P p y ,  
- pI@y + + ikQ"+l = pn +fAt(3@ - - ik@ +PI@,, 

-/?U&'+ Un+l = O n + ! j A t ( 3 ~ ~ - ~ ~ - l ) + P U p Y .  

In the above, k = 2nk/LZ,  p = At/2R,  0 = +At P ,  i = (- l)t, and (*) denotes Fourier- 
transformed variables in wavenumber space. The wavenumber is denoted by k and 
the dependence of F?, 9,o and 0 (the order of the dependent variables here represents 
that of the solution vector adopted for the numerical solution of (4.7)) upon k has 
been suppressed. The superscript n represents the time level. H, ,  H ,  and H,, which 
contain the terms treated explicitly, are given by 

1 
' R  

1 
' R  

H ,  = - VVy-  W V  +- Vzz, 

vwy- ww +- w,,, H2 = - 
I 

R2 ' J  * 

1 
Y R  

vuy-wu +-U,,-V+- H ,  = - 

Appropriate boundary conditions are yet to be prescribed for (4.7), and will be 
discussed later. 

For each wavenumber k, the system of equations (4.7) can be written as 

LS = F,  (4.9) 

where S = [@+l, Vn+l,  @ + l ,  on+,] and F is the known right-hand side. The matrix 
L constructed by using Chebyshev polynomials is a full M x M matrix where M 2 4N. 
A direct solution of (4.9) by Gauss elimination methods would require O ( P )  storage 
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and O ( W )  arithmetic operations. In  the present study, we use a spectral iteration 
scheme, based on a minimum residual (MR) method with finite-difference precon- 
ditioning, that requires only O(M)  storage and O(M log M) operations per iteration. 
An effective preconditioning is provided by using a staggered mesh in the normal 
direction, whereby the velocities are defined at the cell faces qm, and the pressure 
at the cell centres 

qm-4 = cos(n~$), m =  1 , 2  ,..., N .  (4.10) 

The momentum equations are enforced at the cell faces, whereas the continuity 
equations are enforced at  the centres. More details of the iterative spectral method 
employing staggered mesh are given in MZH. 

We how return to the question of boundary conditions imposed for the numerical 
solution of (4.7). Because of the staggered mesh in the vertical direction, no artificial 
pressure boundary conditions are required. The velocity boundary conditions for 
k + o are 

and 1 u= v =  V=o,  Y = O ,  

u =  P= V=o,  Y = Ymax, 
(4.11) 

or 0,=-Y,,,0, 9,=-lk19, V,=-]kIV, Y =  Y,,,. 

In some test runs, both the zeroth-order and first-order boundary conditions at  
Y = Y,, gave almost identical results when Y,,, 2 15. With the first-order 
boundary conditions, the iteration scheme (MR) converged faster ; and, therefore, 
these conditions were imposed at Y,,, = 15 in all the calculations to be reported in 
this section. This fast convergence with first-order boundary conditions was also 
noted in MZH. 

For k = 0, the boundary conditions are 

(4.12) 

K v = - ,  V = U = o ,  Y = O ,  
R 

1 w =  1, u=R,  Y = Y,,,. 

The structure of (4.7) fork = 0, with the above boundary conditions, is quite simple. 
In  this case and 0 satisfy two tridiagonal equations, and after first solving this 
s stem the continuity equation is then solved as a bidiagonal equation for 9. Once 
diis known, the pressure 0 also satisfies a bidiagonal equation. This is solved by 
setting 0( q) = 0 and then solving for each successive value of the pressure. This 
particular choice of Q(Y;) is arbitrary and corresponds to specifying the mean 
pressure. 

Initial conditions required for the solution of (4.7) are provided by imposing a 
disturbance of finite amplitude upon the basic state. The disturbance eigenfunctions 
are calculated using linear theory as discussed in I. The initial conditions thus are 

I U(Y 1 U ( 2 ,  Y,O) = ~ + e R e ( U O ( Y ) e i a Z } ,  

(4.13) 

W ( 2 ,  Y, 0) = @( Y) + E Re { W,( Y) eiuz},) 
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where the disturbance eigenfunctions lTo, V,, W, have been normalized such that the 
maximum value is 1. The parameter c has been introduced to control the magnitude 
of initial disturbance. 

Let us define the flow energy a t  any time t as 

E(t)=~oLZdZ~oymax{(U(Z,  + ( W ( Z ,  Y , t ) - q 2  

(4.14) 

and rate of change of the disturbance amplitude as 

1 d E  
2E dt’ 

q=-- (4.15) 

where u > 0 and CT < 0 signify growing and decaying disturbances respectively. 
I n  the numerical calculations which are reported below, we have used 33 Chebyshev 

polynomials in the normal direction whilst the number of Fourier modes along the 
attachment line varies from case to  case. Excellent agreement between the numerical 
results and linear theory was achieved in MZH for plane Poiseuille flow and Blasius 
boundary layer with only 33 Chebyshev polynomials. We compared the solution of 
(4.7) with linear theory results just to check the accuracy of the numerical scheme 
and found satisfactory agreement. As a example, calculations were performed at 
a = 0.25648 for three different Reynolds numbers using E = 0.0001 and K = 4. The 
results are presented in table 1 .  These results were obtained using a time step 
At = CFL (L, /K)  with a CFL number of 0.1. Calculations were terminated a t  t = 306, 
which corresponds to about 4.5 linear wave periods. For all three Reynolds numbers, 
the difference between the calculated (r (averaged) and linear-theory result is 
approximately 0.000016, which is indicative of the degree of accuracy that can be 
expected with the spatial and temporal discretizations employed. In  order to estimate 
numerical dispersion in the calculation scheme, we performed a computation a t  
R = 570 with a = 0.32 and E = 0.00001. The calculated wall pressure for this wave 
is plotted in figure 5 .  The non-dimensional frequency calculated from the signal is 
0.1235 : the corresponding linear-theory result is 0.1249. Having established that 
reasonably accurate results may be expected from the numerical computations when 
N = 32 and CFL = 0.1, we now present some results that  pertain to finite-amplitude 
motions. 

According to linear stability theory, all infinitesimal disturbances decay for K = 0 
if R < 583.1. The critical wavenumber in this case is a = 0.288. The weakly nonlinear 
theory presented in $ 3  showed that bifurcation is always supercritical near the lower 
branch of the neutral curve and is subcritical on the upper branch, so the flow will 
be unstable in a finite-amplitude sense for wavenumbers corresponding to most of 
the upper branch of the neutral curve. We first show that the numerical computations 
support the result that  subcritical bifurcations cannot take place at wavenumbers 
that correspond to the lower branch of the neutral curve. We do this by performing 
a calculation a t  R = 570 with a = 0 . 2 8 , ~  = 0.12 and K = 8. The results are presented 
in figures 6 (a-c) .  I n  figure 6 (a)  the disturbance energy is plotted and is found to  decay 
as a function of time. Figure 6 ( b )  contains a plot of the rate of change of disturbance 
amplitude (a) which shows that, after an initial period of positive growth, cr settles 
down at a negative value of about -0.00059 (the linear value is -0.00016). 
Amplitudes of the fundamental mode and first harmonic, plotted in figure 6 (c), also 
decay. Similar calculations were performed a t  R = 570 with a = 0.25648 and 
E = 0.05, 0.12, 0.2. The results are consistent with the weakly-nonlinear-theory 
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R a glinear (Tcalculated I Error I 

610 0.25648 0.0 0.0000160 0.0000160 
655 0.25648 0.0004423 0.0004589 0.0000166 

TABLE 1.  Comparison of calculated growth rate with linear theory ( K  = 4, t = 306, E = 0.OOOl) 

570 0.25648 -0.0004523 -0.0004365 0.0000158 

0.000 005 

0.000003 

0.000001 

-0.000001 t 

-0.000 

-0.000005 I I I I I I 
0 80 160 240 320 400 

t 

FIGURE 5. A plot of the calculated wall pressure for R = 570, a = 0.32, 
E = 0.00001. Here E is the initial perturbation amplitude. 

result that unstable (subcritical) finite-amplitude disturbance cannot exist in a swept 
attachment-line boundary layer at wavenumbers that correspond to the lower branch 
of the neutral curve. Our full nonlinear computations do support the prediction of 
the weakly nonlinear theory, that subcritical instability can occur at wavenumbers 
that correspond to the upper branch of the neutral curve. Our computations at 
R = 570 with E = 0.12 and a = 0.32, 0.33, 0.34 and 0.37 all show the existence of 
unstable finite-amplitude motions. The band of unstable wavenumbers at R = 570 
lies in the range 0.28 < a < 0.4 with a = 0.34 as the most unstable wavenumber. The 
results for this wavenumber are presented in figures 7 (u-d). Figure 7 (a )  shows that 
flow energy increases with time. The disturbance growth rate is plotted in figure 7 ( b ) .  
The magnitude of the growth rate at the time when computations were terminated 
was about 0.00036: the corresponding linear-theory result is -0.00099. The 
amplitudes of the fundamental mode and fist harmonic are plotted in figure 7(c), 
while the wall-pressure distribution is given in figure 7 (d). These results were obtained 
using K = 8; however, some of the computations at  other wavenumbers were done 
using K = 16, and very little effect on the growth rate was found. These computations 
clearly show the existence of subcritical instability in the attachment-line boundary 
layer. In figure 8 the effect of varying Reynolds number is studied for E = 0.12, 
a = 0.34 and K = 8, where the disturbance energy E(t) is plotted for R = 570, 550, 
540, and 530. It appears that for a = 0.34 and E = 0.12, subcritical instability is 
present only for Reynolds numbers R 2 540. A t  R = 530, E(t) decays when E = 0.12. 
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FIGURE 6 ( a , b ) .  For caption see facing page. 

Calculations at other wavenumbers also showed a similar trend. Higher initial 
disturbance amplitude may, however, trigger subcritical instability at lower Reynolds 
numbers. Some calculations performed at  R = 538 showed that the growth rate 
increases with increasing e. 

A set of calculations was carried out at R = 500 with 8 = 0.15 and 0.2; the 
disturbances a t  all the wavenumbers decayed. In figure 9 (a+) we present the results 
of these calculations for a = 0.35, K = 16. The growth rate at the end of the 
computation is about -0.00051, whilst the corresponding linear value is -0.001 97. 
A summary of all the computations at subcritical Reynolds numbers is presented in 
table 2. Based on these computations it appears that subcritical instability could exist 
in a swept attachment-line boundary layer only at Reynolds numbers in excess of 
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0.08 t 
0 100 200 300 400 500 

t 

FIGURE 6. Computed results for R = 570, a =0.28, E = 0.12. (a) Disturbance energy, 
(b)  Disturbance growth rate. (c) Amplitude of fundamental mode, 1, and the first harmonic, 2. 

about 535 with reasonable amplitudes of initial disturbances. The experimental points 
of Pfenninger & Bacon (1969) below this Reynolds number may have been influenced 
by three-dimensional disturbances. 

We now come to the question of the supercritical bifurcation near the lower branch 
of the neutral curve as predicted by the weakly nonlinear theory. For the bifurcation 
to be supercritical, a neutrally stable solution should exist at supercritical Reynolds 
numbers. We investigated this result by performing a computation at R = 900 and 
a = 0.201 178. For these conditions the linear growth rate is 0.00065. We chose an 
initial amplitude E = 0.04 and a streamwise resolution with K = 8. As shown in 
figure 10(a) the energy solution settles down a t  a constant value. This is confirmed 
by plotting the growth rate Q (figure lob), which attains a value of approximately 
zero at large t for E = 0.04. The amplitude of the fundamental mode is plotted in 
figure lO(c). The final value is 0.0398, in excellent agreement with the weakly non- 
linear prediction of 0.04. In  order to see the effect of initial disturbance, two solutions 
were obtained with-e = 0.02 and E = 0.06, and are also plotted in figure 10. It is quite 
clear that they too tend to the same finite-amplitude solution. 

Another calculation was performed at the same wavenumber, but at a higher 
Reynolds number of 1OOO. According to the weakly nonlinear theory, the equilibrium 
amplitude should be about 0.056 for this Reynolds number. First, a computation was 
performed with E = 0.05. The amplitude of the fundamental mode is plotted in 
figure 11. At the end of the computation, the amplitude is slightly above 0.06 and 
still increasing. The calculation was repeated with 6 = 0.065 and the result is also 
plotted in figure 11. We see that this solution shows an equilibrium state at an 
amplitude of about 0.067. The discrepancy between this and the weakly nonlinear 
prediction is not totally unexpected, since at this Reynolds number the contribution 
from the higher-order nonlinear terms will be significant. 
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FIQURE 7. Computed results forR = 570, a = 0,34, E = 0.12. (a) Disturbance energy. (b)  Disturbance 
growth rate. (c) Amplitude of fundamental mode, 1 ,  and the first harmonic, 2, (d) Wall pressure. 
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FIQURE 8. A plot of disturbance energy aa a function of time for a = 0.34 
and E = 0.12 for four different Reynolds numbers. 

5. Conclusion 
The results which we have given in this paper extend the linear theory of I into 

both the weakly and fully nonlinear regions using asymptotic and numerical means. 
There seems little doubt that the absence of any upper-branch modes in the 
experiments of Pfenninger, Bacon, and Poll is due to the subcritical nature of the 
bifurcation along most of the upper branch. Furthermore, this subcritical bifurcation 
is the cause ofthe nonlinearly unstable disturbances which are investigatednumerically 
in $4. These disturbances exist below the linear critical Reynolds number, and the 
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FIGURE 9 (a ,b) .  For caption see facing page. 

region in the wavenumber/Reynolds-number plane where they are unstable increases 
with the size of the initial amplitude. The existence of these modes is consistent with 
the results of Pfenninger & Bacon (1969), but, since the latter authors gave no details 
of the size of the disturbances introduced into the boundary layer, a quantitative 
comparison between experiment and theory is not possible. 

Unfortunately, the expensive nature of the calculation prevented us from invest- 
igating the effect of suction or blowing on the nonlinearly unstable disturbances. It 
is, of course, possible to investigate particular cases if and when experimental results 
become available. However, it is clear from weakly nonlinear theory that the 
stabilizing influence of suction on transition suggested by the results of our linear 
calculations of I is perhaps destroyed by nonlinear effects. We refer to the fact that, 
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FIQURE 9. Computed results for R = 500, a = 0.35, E = 0.2. 
"he description is the same aa in figure 6. 

R 

a 570 560 550 540 535 530 500 

0.28 
0.3 
0.32 
0.325 
0.33 
0.335 
0.34 
0.3425 
0.345 
0.35 
0.37 
0.4 

TABLE 2. Summary of Naviel-Stokes computations for subcritical 
instability (g = grows, d = decays, n = neutral) 

although the linear critical Reynolds number increases with suction, the part of the 
neutral curve where subcritical disturbances exist increases. Hence, if transition is 
in any way related to the subcritical disturbances, then the suction leads to a larger 
band of nonlinearly unstable modes. In contrast, if the blowing at  the wall is 
sufficiently large, then only supercritically bifurcating modes can exist and no 
nonlinearly unstable modes will exist. Of course, this discussion ignores completely 
the role of three-dimensional disturbances in the instability- transition process, so that 
perhaps the most that we should assume is that the stabilizing or destabilizing effect 
of suction on the attachment-line instability problem is not as yet fully understood; 
obviously the present calculation suggests many experimental aspects of the problem 
which have not yet been investigated. 
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FIGURE 10 (u,  b ) .  For caption see facing page. 

Unfortunately, the particular X-dependence of the problem that we assumed in 
$2 does not generalize to oblique waves, so that this type of disturbance can only 
be investigated in a formally self-consistent manner using asymptotic means based 
on a high-Reynolds-number assumption. In  any flow of practical importance the basic 
flow which we have considered is only the first approximation to the flow near the 
attachment line. It is yet to be shown how the Tollmien-Schlichting instability along 
the attachment line merges into a crossflow instability further away from the 
attachment line. There again, it seems that the only self-consistent way to investigate 
this problem would be to use asymptotic methods based on a high-Reynolds-number 
assumption. 



Instability of an attachment-line boundary layer 

0.04 

0. LO 

0.08 

0.04 - 
0 200 400 600 800 lo00 1200 

FIGURE 10. Computed results for R = 900, a = 0.201 178 and E = 0.02,0.04,0.06. ( ) Disturb 
energy. (b) Disturbance growth rate. (c )  Amplitude of the fundamental mode. 
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FIGURE 11. Computed amplitude of the fundamental mode for 
R = 1O00, a = 0.201 178 and E = 0.06,0.065. 
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